Tetrahedral Platinum Carbonyl Clusters

Leijun Hao,^a Jagadese J. Vittal,^a Richard J. Puddephatt,*^a Ljubica Manojlović-Muir^b and Kenneth W. Muir*^b

^a Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7

^b Department of Chemistry, University of Glasgow, Glasgow, UK G12 8QQ

The first carbonylplatinum clusters established crystallographically to have tetrahedral Pt₄ cores are $[Pt_4H(CO)(\mu-CO)_3L_4]ReO_4 2$ and $[Pt_4(\mu-CO)_2L_4(ReO_4)_2] 3$, $L = P(C_6H_{11})_3$, having 56 and 54 cluster valence electrons (CVE), respectively.

There are few tetrahedral platinum clusters; those characterized crystallographically include hydride derivatives [Pt₄H₂L₄]²⁺ [48 CVE, L = PBu^t₃, Pt-Pt(av.) 2.68(5) Å], [Pt₄H₂L₄] [50 CVE, L = PBu^t, Pt-Pt(av.) 2.74(3) Å] and [Pt₄H₈L₄] [56 CVE, $L = PPr_{2}^{i}Ph, Pt-Pt(av.) 2.94(5) Å], while [Pt_{4}H_{7}L_{4}]^{+} [54 \text{ CVE},$ $L = PBu_{3}^{t}$, Pt–Pt(av.) 2.78(4) Å] has a butterfly structure.¹ For carbonylplatinum clusters, there are many with 58 CVE, including $[Pt_4(\mu-CO)_5L_4]$, L = phosphine, having butterfly structures,² and there is a recent report of an unstable tetranuclear cluster characterized only in solution as either $[Pt_4H(\mu-CO)_3L_4]^+$ (54 CVE) or $[Pt_4H(CO)(\mu-CO)_3L_4]^+$ [56 CVE, L = $P(C_6H_{11})_3$], the presence or absence of a terminal carbonyl ligand being uncertain. This cluster was formed on decomposition of $[Pt_3(\mu_3-H)(\mu-CO)_3 \{P(C_6H_{11})_3]^+$ in the presence of HBF₄; it was suspected to be tetrahedral based on its NMR properties but could not be isolated in pure form.³ On theoretical grounds, it has been argued that stable tetrahedral clusters might include $[Pt_4L_8]$ (56 CVE) and $[Pt_4L_8]^{2+}$ (54 CVE).^{4,5} Clearly, no empirical trend of structure vs. electron count is yet apparent. This article reports the first tetrahedral carbonylplatinum cluster complexes with 54 and 56 CVEs.

The reaction of $[Pt_3(\mu-CO)_3L_3]$ **1**, $L = P(C_6H_{11})_3$,⁶ with Re₂O₇ in moist CH₂Cl₂ gave the complex $[Pt_4H(CO)(\mu-CO)_3L_4]ReO_4$, **2**, which could be isolated in high yield as a redblack crystalline solid. Its formation from **1** and HReO₄, presumed to be formed *in situ* by reaction of Re₂O₇ with adventitious water, can be described by eqn. (1).

$$4 [Pt_3(\mu-CO)_3L_3] + 3 HReO_4 \rightarrow 3 [Pt_4H(CO)(\mu-CO)_3L_4]ReO_4$$
(1)

Further reaction of 2 with $HReO_4$ occurred more slowly to give a second platinum cluster complex $[Pt_4(\mu-CO)_2L_4(ReO_4)_2]$ 3, according to eqn. (2).

$$[Pt_{4}H(CO)(\mu-CO)_{3}L_{4}]ReO_{4} + HReO_{4} \rightarrow [Pt_{4}(\mu-CO)_{2}L_{4}(ReO_{4})_{2}] + 2CO + H_{2}$$
(2)

Both 2 and 3 were thermally stable and so could be fully characterized both in solution and in the solid state as described below. The structure of the Pt_4 cluster cation in 2 is shown in Fig. 1.[†] The platinum core is tetrahedral and can be considered to be based on a $[Pt_3(\mu-CO)_3L_3]$ unit capped by a $[PtH(CO)L]^+$ unit. The Pt-Pt distances within the $[Pt_3(\mu-CO)_3L_3]$ unit [2.689(1)-2.714(1) Å] are shorter than those to the capping Pt(4) atom [2.819(1)-2.878(1) Å]. A hydride ligand was identified in a difference Fourier map and it was successfully refined to give Pt(4)-H 1.7(2) Å. In this model, the Pt(4)H(CO)L unit has an angular structure with angles C-Pt-P 98.9(6), H-Pt-P 72(5) and H-Pt-C 131(5)° and the hydride is a terminal ligand. The simplest view of the bonding in the cation would be to consider the $[Pt_3(\mu-CO)_3L_3]$ unit to donate two electrons from its filled metal-metal bonding MO of a1 symmetry to a vacant acceptor orbital of a T-shaped $[PtH(CO)L]^+$ unit as shown in 2a (L = PH₃ in the EHMO calculations). In this model, the hydride is expected to be trans to the carbonyl ligand on Pt⁴; according to the X-ray model the structure is distorted in the solid state since the angle H–Pt–C is 131(5) rather than 180°.‡

In the ¹H NMR spectrum of **2** in CD₂Cl₂ at room temperature, the hydride resonance appeared at δ –5.24, as a doublet with ²J(P⁴H) 10 Hz. Coupling to ¹⁹⁵Pt gave a 1:4:1 multiplet due to ¹*J*(Pt⁴H) 480 Hz and an apparent 1:4:7:4:1 quintet due to ²*J*(PtH) 137 Hz [an average of the couplings ²*J*(Pt¹H,Pt²H,Pt³H)]. Clearly, the Pt(4)H(CO)L unit is rotating rapidly with respect to the Pt₃(μ -CO)₃L₃ triangle so that the cluster appears to have threefold symmetry. In agreement, the ³¹P NMR spectrum contains only two resonances, a quartet at δ 71.3 due to P⁴ [q, 1P, ¹*J*(PtP) 3425, ²*J*(PtP) 230, ³*J*(PP) 30 Hz, a further doublet splitting was seen in the ¹H coupled spectrum, ²*J*(P⁴H) 10 Hz], and a doublet at δ = 49.7 due to P¹, P², P³ [d, 3P, ¹*J*(PtP) 5180, ²*J*(PtP) 280, ³*J*(PP) 140, ³*J*(PP) 29 Hz]. Similarly, the ¹³C NMR spectrum contained only two carbonyl resonances at δ 191.4 due to C⁴ [m, 1 C, ¹*J*(PtC) 1250, ²*J*(PtC) 45 Hz] and at δ 244.5 due to C¹, C², C³ [m, 3C, ¹*J*(PtC) = 590, ²*J*(PtC) 35 Hz, μ -CO]. The averaging of the P¹, P², P³ and C¹, C², C³ resonances is clearly due to fluxionality.§

The molecular structure of 3 (Fig. 2)¶ contains a slightly distorted tetrahedral Pt_4 cluster with two opposing edges, related by a crystallographic diad axis, bridged by carbonyl

Fig. 1 A view of the structure of the cation $[Pt_4H(CO)(\mu-CO)_3\{P(C_6H_{11})_3\}_4]^+$. Cyclohexyl groups are omitted for clarity. Selected distances (Å) are Pt(1)-Pt(2) 2.7131(9), Pt(1)-Pt(3) 2.6888(8), Pt(2)-Pt(3) 2.7144(9), Pt(1)-Pt(4) 2.8526(9), Pt(2)-Pt(4) 2.8193(10), Pt(3)-Pt(4) 2.8784(9).

ligands. Each platinum atom is thus coordinated by one carbonyl C atom and also by a terminal $P(C_6H_{11})_3$ ligand. In addition, Pt(2) and Pt(2A) are each attached to one oxygen atom of a terminal ReO_4^- anion $[Pt(2)-O(2)-Re(1) 163.8(7)^\circ]$. The Pt–Pt distances [2.692(1)-2.871(1) Å] are indicative of single bonds,^{8,9} and their wide variation may reflect the coordination of Pt(2) and Pt(2A) by an additional ligand. Although **3** is a 54-electron cluster, EHMO calculations suggest that the perrhenate ligands have little effect on the frontier orbitals and the bonding resembles that discussed for the 50-electron $[Au_4L_4]^{2+}$ and related compounds.^{5a,10}

The crystal structure of 3 is remarkable (Fig. 3): 18 molecules of the cluster are present in a cell of volume 46 608 Å³. The molecules aggregate through polar O···H–C interactions [O···H 2.42–2.50 Å] to form open channels lined with cyclohexyl

Fig. 2 A view of the metal coordination in $[Pt_4L_4(\mu-CO)_2(ReO_4)_2]$, L = P(C₆H₁₁)₃. Only the *ipso* carbon atom of each cyclohexyl ring is shown for clarity. The operation of the crystallographic diad axis is indicated by a terminal letter A in the atom name. 30% probability ellipsoids are displayed. Selected bond distances are as follows: Pt(1)–Pt(1A) 2.692(1), Pt(1)–Pt(2A) 2.725(1), Pt(1)–Pt(2A) 2.796(1), Pt(2)–Pt(2A) 2.871(1), Pt(1)–C1 1.94(1), Pt(1)–Pt(1) 2.268(5), Pt(2)–C(1A) 1.91(2), Pt(2)–O(2) 2.153(9), Pt(2)–P(2) 2.328(4), Re(1)–O(2) 1.74(1), Re(1)–O(3) 1.72(1), Re(1)–O(4) 1.69(1), Re(1)–O(5) 1.70(1) Å.

Fig. 3 CPK space-filling model of the crystal structure of **3** viewed down the *c*-axis. Oxygen atoms are shown in black.

groups. These channels are parallel to the *c*-axis and have a circular cross-section with a diameter of *ca*. 9 Å. Thus **3** can be considered a *tubuland*,¹¹ with vacant channels large enough to act as hosts for a variety of small molecules.

The clusters 2 and 3 appear to be the first examples of carbonyl clusters of platinum established to have 56 and 54 CVEs, respectively, and 3 appears to be the first tetrahedral Pt₄ cluster having a 54-electron count.^{1–5} It is interesting that, although the ligation and electron counts in 2 and 3 are different, the Pt₄ core structures are the same and the average Pt–Pt distances [2.778 Å in 2, 2.767 Å in 3] are similar.

We thank the NSERC (Canada) for financial support to R. J. P. and EPSRC (UK) for an equipment grant to K. W. M.

Received, 10th July 1995; Com. 5/04513D

Footnotes

† Crystal data for **2**: C₇₆H₁₃₃O₈P₄Pt₄Re, M = 2265.26, triclinic, $P\overline{1}$, a = 14.245(2), b = 16.856(2), c = 17.558(2) Å, $\alpha = 90.135(7)$, $\beta = 91.945(9)$, $\gamma = 98.317(8)^\circ$, U = 4169(1) Å³, Z = 2, $D_c = 1.805$ g cm⁻³, $R_1 = 0.0595$, $wR_2 = 0.1396$.

[‡] Extended Huckel MO calculations indicate that the structrue with T-shaped [Pt⁴H(CO)L]⁺ unit, with hydride edge-bridging as in the line drawing **2a**, is preferred. We note that there is support for this structure from spectroscopic data in solution. For example, the magnitude of ¹J(Pt⁴H) is in the normal range for a bridging hydride (low for a terminal hydride) and ¹J(Pt⁴C) suggests a carbonyl *trans* to a bridging hydride; the small magnitude of ²J(PtH) shows that the hydride is *cis* to the phosphine.⁷ Comparison of the spectroscopic properties of **2** with the more limited data for the cluster proposed to be [Pt₄H(μ -CO)₃L₄]BF₄ or [Pt₄H(CO)(μ -CO)₃L₄]BF₄³ indicates that the cations are the same and that the latter formulation is the correct one.

§ The fluxionality was partially frozen out in the NMR spectra in CD₂Cl₂ at -90 °C, but in the ¹H NMR spectrum, *two* PtH resonances were observed at δ -4.9 [¹J(PtH) 480 Hz, isomer A] and -5.2 [¹J(PtH) 460 Hz, isomer B), indicating the presence of two isomers (or rotamers) in approximately a 2:1 ratio.

¶ Crystal data for 3: $C_{74}H_{132}O_{10}P_4Pt_4Re_2$, M = 2458.44, trigonal, space group R3c (No. 167), hexagonal axes, a = 45.067(7), c = 26.498(2) Å, U = 46,608(11) Å³, $D_c = 1.577$ g cm⁻³, Z = 18, $R_1 = 0.047$, $wR_2 = 0.111$.

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- P. W. Frost, J. A. K. Howard, J. L. Spencer, D. G. Turner and D. Gregson, J. Chem. Soc., Chem. Commun., 1981, 1104; R. J. Good-fellow, E. M. Hamon, J. A. K. Howard, J. L. Spencer and D. G. Turner, J. Chem. Soc., Chem. Commun., 1984, 1604.
- A. Moor, P. S. Pregosin, L. M. Venanzi and A. J. Welch, *Inorg. Chim.* Acta, 1984, 85, 103; D. G. Evans, M. F. Hallam, D. M. P. Mingos and R. W. M. Wardle, *J. Chem. Soc., Dalton Trans.*, 1987, 1889.
- 3 K.-H. Dahmen, D. Imhof and L. M. Venanzi, *Helv. Chim. Acta*, 1994, 77, 1029.
- 4 D. G. Evans and D. M. P. Mingos, J. Organomet. Chem., 1982, 240, 321.
- 5 For recent reviews, see D. M. P. Mingos and D. J. Wales, *Introduction to Cluster Chemistry*, Prentice Hall, New Jersey, 1990; D. Imhof and L. M. Venanzi, *Chem. Soc. Rev.*, 1994, 185.
- 6 K.-H. Dahmen, A. Moor, R. Naegeli and L. M. Venanzi, *Inorg. Chem.*, 1991, **30**, 4268.
- G. K. Anderson and R. J. Cross, J. Chem. Soc., Dalton Trans., 1979, 1246; M. J. Church and M. J. Mays, J. Chem. Soc. A, 1968, 3074; R. G. Goel, W. O. Ogini and R. C. Srivastava, Organometallics, 1982, 1, 819; A. J. McLennan and R. J. Puddephatt, Organometallics, 1986, 5, 811.
- 8 D. M. P. Mingos and R. W. M. Wardle, *Transition Met. Chem.*, 1985, 10, 441.
- 9 R. J. Puddephatt, Lj. Manojlović-Muir and K. W. Muir, *Polyhedron*, 1990, **9**, 2767.
- Y. Yang and P. R. Sharp, J. Am. Chem. Soc., 1994, 116, 6983; E. Zeller,
 H. Beruda and H. Schmidbaur, Inorg. Chem., 1993, 32, 3203.
- 11 E. Weber and H.-P. Josel, J. Incl. Phenom., 1983, 1, 79.