Tetrahedral Platinum Carbonyl Clusters

Leijun Hao,a Jagadese J. Vittal,a Richard J. Puddephatt,*a Ljubica Manojlović-Muirb and Kenneth W. Muir*b
 a Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7
 ${ }^{\text {b }}$ Department of Chemistry, University of Glasgow, Glasgow, UK G12 8QQ

The first carbonylplatinum clusters established crystallographically to have tetrahedral Pt_{4} cores are $\left[\mathrm{Pt}_{4} \mathrm{H}(\mathrm{CO})(\mu-\mathrm{CO})_{3} \mathrm{~L}_{4}\right] \mathrm{ReO}_{4} 2$ and $\left.\left[\mathrm{Pt}_{4}(\mu-\mathrm{CO})_{2} \mathrm{~L}_{4}\left(\mathrm{ReO}_{4}\right)_{2}\right] 3, \mathrm{~L}=\mathrm{P}_{\left(\mathrm{C}_{6}\right.} \mathrm{H}_{11}\right)_{3}$, having 56 and 54 cluster valence electrons (CVE), respectively.

There are few tetrahedral platinum clusters; those characterized crystallographically include hydride derivatives $\left[\mathrm{Pt}_{4} \mathrm{H}_{2} \mathrm{~L}_{4}\right]^{2+}$ [48 CVE, $\mathrm{L}=\mathrm{PBu}^{4}, \mathrm{Pt}-\mathrm{Pt}\left(\mathrm{av}\right.$.) 2.68(5) \AA], $\left[\mathrm{Pt}_{4} \mathrm{H}_{2} \mathrm{~L}_{4}\right][50$ CVE, $\mathrm{L}=\mathrm{PBut}, \mathrm{Pt}-\mathrm{Pt}(\mathrm{av}) .2.74(3) \AA]$ and $\left[\mathrm{Pt}_{4} \mathrm{H}_{8} \mathrm{~L}_{4}\right]$ [56 CVE, $\left.\mathrm{L}=\mathrm{PPr}^{\mathrm{i}}{ }_{2} \mathrm{Ph}, \mathrm{Pt}-\mathrm{Pt}(\mathrm{av}) .2.94(5) \AA\right]$, while $\left[\mathrm{Pt}_{4} \mathrm{H}_{7} \mathrm{~L}_{4}\right]+[54 \mathrm{CVE}$, $\mathrm{L}=\mathrm{PBu}_{3}, \mathrm{Pt}-\mathrm{Pt}(\mathrm{av}) .2.78(4) \AA$] has a butterfly structure. ${ }^{1}$ For carbonylplatinum clusters, there are many with 58 CVE, including $\left[\mathrm{Pt}_{4}(\mu-\mathrm{CO})_{5} \mathrm{~L}_{4}\right], \mathrm{L}=$ phosphine, having butterfly structures, ${ }^{2}$ and there is a recent report of an unstable tetranuclear cluster characterized only in solution as either $\left[\mathrm{Pt}_{4} \mathrm{H}(\mu-\mathrm{CO})_{3} \mathrm{~L}_{4}\right]^{+}(54 \mathrm{CVE})$ or $\left[\mathrm{Pt}_{4} \mathrm{H}(\mathrm{CO})(\mu-\mathrm{CO})_{3} \mathrm{~L}_{4}\right]^{+}[56$ CVE, $\mathrm{L}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$], the presence or absence of a terminal carbonyl ligand being uncertain. This cluster was formed on decomposition of $\left[\mathrm{Pt}_{3}\left(\mu_{3}-\mathrm{H}\right)(\mu-\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]^{+}\right.$in the presence of HBF_{4}; it was suspected to be tetrahedral based on its NMR properties but could not be isolated in pure form. ${ }^{3}$ On theoretical grounds, it has been argued that stable tetrahedral clusters might include $\left[\mathrm{Pt}_{4} \mathrm{~L}_{8}\right](56 \mathrm{CVE})$ and $\left[\mathrm{Pt}_{4} \mathrm{~L}_{8}\right]^{2+}(54$ CVE). ${ }^{4,5}$ Clearly, no empirical trend of structure $v s$. electron count is yet apparent. This article reports the first tetrahedral carbonylplatinum cluster complexes with 54 and 56 CVEs.

The reaction of $\left[\mathrm{Pt}_{3}(\mu-\mathrm{CO})_{3} \mathrm{~L}_{3}\right] \mathbf{1}, \mathrm{L}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}{ }^{6}$, with $\mathrm{Re}_{2} \mathrm{O}_{7}$ in moist $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the complex $\left[\mathrm{Pt}_{4} \mathrm{H}(\mathrm{CO})(\mu-\right.$ $\left.\mathrm{CO})_{3} \mathrm{~L}_{4}\right] \mathrm{ReO}_{4}, 2$, which could be isolated in high yield as a redblack crystalline solid. Its formation from 1 and HReO_{4}, presumed to be formed in situ by reaction of $\mathrm{Re}_{2} \mathrm{O}_{7}$ with adventitious water, can be described by eqn. (1).

$$
\begin{gather*}
4\left[\mathrm{Pt}_{3}(\mu-\mathrm{CO})_{3} \mathrm{~L}_{3}\right]+3 \mathrm{HReO}_{4} \rightarrow \\
3\left[\mathrm{Pt}_{4} \mathrm{H}(\mathrm{CO})(\mu-\mathrm{CO})_{3} \mathrm{~L}_{4}\right] \mathrm{ReO}_{4} \tag{1}
\end{gather*}
$$

Further reaction of 2 with HReO_{4} occurred more slowly to give a second platinum cluster complex $\left[\mathrm{Pt}_{4}(\mu-\mathrm{CO})_{2} \mathrm{~L}_{4}\left(\mathrm{ReO}_{4}\right)_{2}\right]$ 3, according to eqn. (2).

$$
\begin{gather*}
{\left[\mathrm{Pt}_{4} \mathrm{H}(\mathrm{CO})(\mu-\mathrm{CO})_{3} \mathrm{~L}_{4}\right] \mathrm{ReO}_{4}+\mathrm{HReO}_{4} \rightarrow} \\
{\left[\mathrm{Pt}_{4}(\mu-\mathrm{CO})_{2} \mathrm{~L}_{4}\left(\mathrm{ReO}_{4}\right)_{2}\right]+2 \mathrm{CO}+\mathrm{H}_{2}} \tag{2}
\end{gather*}
$$

Both 2 and 3 were thermally stable and so could be fully characterized both in solution and in the solid state as described below. The structure of the Pt_{4} cluster cation in $\mathbf{2}$ is shown in Fig. 1. \dagger The platinum core is tetrahedral and can be considered to be based on a $\left[\mathrm{Pt}_{3}(\mu-\mathrm{CO})_{3} \mathrm{~L}_{3}\right]$ unit capped by a $[\mathrm{PtH}(\mathrm{CO}) \mathrm{L}]^{+}$ unit. The $\mathrm{Pt}-\mathrm{Pt}$ distances within the $\left[\mathrm{Pt}_{3}(\mu-\mathrm{CO})_{3} \mathrm{~L}_{3}\right]$ unit [2.689(1)-2.714(1) \AA] are shorter than those to the capping $\mathrm{Pt}(4)$ atom [2.819(1)-2.878(1) \AA]. A hydride ligand was identified in a difference Fourier map and it was successfully refined to give $\operatorname{Pt}(4)-\mathrm{H} \quad 1.7(2) \AA$. In this model, the $\mathrm{Pt}(4) \mathrm{H}(\mathrm{CO}) \mathrm{L}$ unit has an angular structure with angles $\mathrm{C}-\mathrm{Pt}-\mathrm{P}$ 98.9(6), $\mathrm{H}-\mathrm{Pt}-\mathrm{P} 72(5)$ and $\mathrm{H}-\mathrm{Pt}-\mathrm{C} 131(5)^{\circ}$ and the hydride is a terminal ligand. The simplest view of the bonding in the cation would be to consider the $\left[\mathrm{Pt}_{3}(\mu-\mathrm{CO})_{3} \mathrm{~L}_{3}\right]$ unit to donate two electrons from its filled metal-metal bonding MO of a_{1} symmetry to a vacant acceptor orbital of a T-shaped $[\mathrm{PtH}(\mathrm{CO}) \mathrm{L}]^{+}$unit as shown in 2a $\left(\mathrm{L}=\mathrm{PH}_{3}\right.$ in the EHMO calculations). In this model, the hydride is expected to be trans to the carbonyl ligand on Pt^{4}; according to the X-ray model the structure is distorted in the solid state since the angle $\mathrm{H}-\mathrm{Pt}-\mathrm{C}$ is 131(5) rather than 180°. \ddagger
In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature, the hydride resonance appeared at $\delta-5.24$, as a doublet with ${ }^{2} J\left(\mathrm{P}^{4} \mathrm{H}\right) 10 \mathrm{~Hz}$. Coupling to ${ }^{195} \mathrm{Pt}$ gave a $1: 4: 1$ multiplet due to
${ }^{1} J\left(\mathrm{Pt}^{4} \mathrm{H}\right) 480 \mathrm{~Hz}$ and an apparent 1:4:7:4:1 quintet due to ${ }^{2} J(\mathrm{PtH}) \quad 137 \mathrm{~Hz}$ [an average of the couplings $\left.{ }^{2} J\left(\mathrm{Pt}^{1} \mathrm{H}, \mathrm{Pt}^{2} \mathrm{H}, \mathrm{Pt}^{3} \mathrm{H}\right)\right]$. Clearly, the $\mathrm{Pt}(4) \mathrm{H}(\mathrm{CO}) \mathrm{L}$ unit is rotating rapidly with respect to the $\mathrm{Pt}_{3}(\mu-\mathrm{CO})_{3} \mathrm{~L}_{3}$ triangle so that the cluster appears to have threefold symmetry. In agreement, the ${ }^{31} \mathrm{P}$ NMR spectrum contains only two resonances, a quartet at δ 71.3 due to $\mathrm{P}^{4}\left[\mathrm{q}, 1 \mathrm{P},{ }^{1} J(\mathrm{PtP}) 3425,{ }^{2} J(\mathrm{PtP}) 230,{ }^{3} J(\mathrm{PP}) 30 \mathrm{~Hz}\right.$, a further doublet splitting was seen in the ${ }^{1} \mathrm{H}$ coupled spectrum, ${ }^{2} J\left(\mathrm{P}^{4} \mathrm{H}\right) 10 \mathrm{~Hz}$, and a doublet at $\delta=49.7$ due to $\mathrm{P}^{1}, \mathrm{P}^{2}, \mathrm{P}^{3}[\mathrm{~d}$, 3P, ${ }^{1} J(\mathrm{PtP}) 5180,{ }^{2} J(\mathrm{PtP}) 280,{ }^{3} J(\mathrm{PP}) 140,{ }^{3} J(\mathrm{PP}) 29 \mathrm{~Hz}$. Similarly, the ${ }^{13} \mathrm{C}$ NMR spectrum contained only two carbonyl resonances at $\delta 191.4$ due to $\mathrm{C}^{4}\left[\mathrm{~m}, 1 \mathrm{C},{ }^{1} J(\mathrm{PtC}) 1250,{ }^{2} J(\mathrm{PtC})\right.$ $45 \mathrm{~Hz}]$ and at $\delta 244.5$ due to $\mathrm{C}^{1}, \mathrm{C}^{2}, \mathrm{C}^{3}\left[\mathrm{~m}, 3 \mathrm{C},{ }^{1} J(\mathrm{PtC})=590\right.$, $\left.{ }^{2} J(\mathrm{PtC}) 35 \mathrm{~Hz}, \mu-\mathrm{CO}\right]$. The averaging of the $\mathrm{P}^{1}, \mathrm{P}^{2}, \mathrm{P}^{3}$ and C^{1}, $\mathrm{C}^{2}, \mathrm{C}^{3}$ resonances is clearly due to fluxionality. $\%$

The molecular structure of $\mathbf{3}$ (Fig. 2) $\|$ contains a slightly distorted tetrahedral Pt_{4} cluster with two opposing edges, related by a crystallographic diad axis, bridged by carbonyl

Fig. 1 A view of the structure of the cation $\left[\mathrm{Pt}_{4} \mathrm{H}(\mathrm{CO})(\mu-\right.$ $\left.\mathrm{CO})_{3}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\rangle_{4}\right]^{+}$. Cyclohexyl groups are omitted for clarity. Selected distances (\AA) are $\operatorname{Pt}(1)-\operatorname{Pt}(2)$ 2.7131(9), $\operatorname{Pt}(1)-\operatorname{Pt}(3) 2.6888(8), \operatorname{Pt}(2)-\operatorname{Pt}(3)$ 2.7144(9), $\operatorname{Pt}(1)-\operatorname{Pt}(4)$ 2.8526(9), $\operatorname{Pt}(2)-\operatorname{Pt}(4) 2.8193(10), \mathrm{Pt}(3)-\mathrm{Pt}(4)$ 2.8784(9).

2a

Structure predicted by EHMO for 2
ligands. Each platinum atom is thus coordinated by one carbonyl C atom and also by a terminal $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ ligand. In addition, $\mathrm{Pt}(2)$ and $\mathrm{Pt}(2 \mathrm{~A})$ are each attached to one oxygen atom of a terminal $\mathrm{ReO}_{4}{ }^{-}$anion $\left[\mathrm{Pt}(2)-\mathrm{O}(2)-\mathrm{Re}(1) 163.8(7)^{\circ}\right]$. The $\mathrm{Pt}-\mathrm{Pt}$ distances [2.692(1)-2.871(1) Å] are indicative of single bonds, ${ }^{8,9}$ and their wide variation may reflect the coordination of $\operatorname{Pt}(2)$ and $\operatorname{Pt}(2 \mathrm{~A})$ by an additional ligand. Although 3 is a 54 -electron cluster, EHMO calculations suggest that the perrhenate ligands have little effect on the frontier orbitals and the bonding resembles that discussed for the 50 -electron $\left[\mathrm{Au}_{4} \mathrm{~L}_{4}\right]^{2+}$ and related compounds. ${ }^{5 a, 10}$

The crystal structure of $\mathbf{3}$ is remarkable (Fig. 3): 18 molecules of the cluster are present in a cell of volume $46608 \AA^{3}$. The molecules aggregate through polar $\mathrm{O} \cdots \mathrm{H}-\mathrm{C}$ interactions $[\mathrm{O} \cdots \mathrm{H}$ $2.42-2.50 \mathrm{~A}]$ to form open channels lined with cyclohexyl

Fig. 2 A view of the metal coordination in $\left[\mathrm{Pt}_{4} \mathrm{~L}_{4}(\mu-\mathrm{CO})_{2}\left(\mathrm{ReO}_{4}\right)_{2}\right]$, $\mathrm{L}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$. Only the ipso carbon atom of each cyclohexyl ring is shown for clarity. The operation of the crystallographic diad axis is indicated by a terminal letter A in the atom name. 30\% probability ellipsoids are displayed. Selected bond distances are as follows: $\operatorname{Pt}(1)-\operatorname{Pt}(1 \mathrm{~A}) 2.692(1), \mathrm{Pt}(1)-\mathrm{Pt}(2)$ $2.725(1), \mathrm{Pt}(1)-\mathrm{Pt}(2 \mathrm{~A}) 2.796(1), \mathrm{Pt}(2)-\mathrm{Pt}(2 \mathrm{~A}) 2.871(1), \mathrm{Pt}(1)-\mathrm{C} 1$ 1.94(1), $\mathrm{Pt}(1)-\mathrm{P}(1) 2.268(5), \mathrm{Pt}(2)-\mathrm{C}(1 \mathrm{~A}) 1.91(2), \mathrm{Pt}(2)-\mathrm{O}(2) 2.153(9), \mathrm{Pt}(2)-\mathrm{P}(2)$ $2.328(4), \operatorname{Re}(1)-\mathrm{O}(2) 1.74(1), \operatorname{Re}(1)-\mathrm{O}(3) 1.72(1), \operatorname{Re}(1)-\mathrm{O}(4) 1.69(1)$, $\operatorname{Re}(1)-\mathrm{O}(5) 1.70(1) \AA$.

Fig. 3 CPK space-filling model of the crystal structure of $\mathbf{3}$ viewed down the c-axis. Oxygen atoms are shown in black.
groups. These channels are parallel to the c-axis and have a circular cross-section with a diameter of $c a .9 \AA$. Thus $\mathbf{3}$ can be considered a tubuland, ${ }^{11}$ with vacant channels large enough to act as hosts for a variety of small molecules.
The clusters 2 and 3 appear to be the first examples of carbonyl clusters of platinum established to have 56 and 54 CVEs, respectively, and $\mathbf{3}$ appears to be the first tetrahedral Pt_{4} cluster having a 54 -electron count. ${ }^{1-5}$ It is interesting that, although the ligation and electron counts in $\mathbf{2}$ and $\mathbf{3}$ are different, the Pt_{4} core structures are the same and the average $\mathrm{Pt}-\mathrm{Pt}$ distances [$2.778 \AA$ in 2, $2.767 \AA$ in 3] are similar.

We thank the NSERC (Canada) for financial support to R. J. P. and EPSRC (UK) for an equipment grant to K. W. M.

Received, 10th July 1995; Com. 5/04513D

Footnotes

\dagger Crystal data for 2: $\mathrm{C}_{76} \mathrm{H}_{133} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Pt}_{4} \mathrm{Re}, M=2265.26$, triclinic, $P \overline{1}, a=$ 14.245(2), $b=16.856(2), c=17.558(2) \AA, \alpha=90.135(7), \beta=91.945(9)$, $\gamma=98.317(8)^{\circ}, U=4169(1) \AA^{3}, Z=2, D_{\mathrm{c}}=1.805 \mathrm{~g} \mathrm{~cm}^{-3}, R_{1}=0.0595$, $w R_{2}=0.1396$.
\ddagger Extended Huckel MO calculations indicate that the structrue with Tshaped $\left[\mathrm{Pt}^{4} \mathrm{H}(\mathrm{CO}) \mathrm{L}\right]^{+}$unit, with hydride edge-bridging as in the line drawing 2a, is preferred. We note that there is support for this structure from spectroscopic data in solution. For example, the magnitude of ${ }^{1} J\left(\mathrm{Pt}^{4} \mathrm{H}\right)$ is in the normal range for a bridging hydride (low for a terminal hydride) and ${ }^{1} J\left(\mathrm{Pt}^{4} \mathrm{C}\right)$ suggests a carbonyl trans to a bridging hydride; the small magnitude of ${ }^{2} J(\mathrm{PPtH})$ shows that the hydride is cis to the phosphine. ${ }^{7}$ Comparison of the spectroscopic properties of 2 with the more limited data for the cluster proposed to be $\left[\mathrm{Pt}_{4} \mathrm{H}(\mu-\mathrm{CO})_{3} \mathrm{~L}_{4}\right] \mathrm{BF}_{4}$ or $\left[\mathrm{Pt}_{4} \mathrm{H}(\mathrm{CO})(\mu-\right.$ $\left.\mathrm{CO})_{3} \mathrm{~L}_{4}\right] \mathrm{BF}_{4}{ }^{3}$ indicates that the cations are the same and that the latter formulation is the correct one.
\S The fluxionality was partially frozen out in the NMR spectra in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-90^{\circ} \mathrm{C}$, but in the ${ }^{1} \mathrm{H}$ NMR spectrum, two PtH resonances were observed at $\delta-4.9\left[{ }^{1} J(\mathrm{PtH}) 480 \mathrm{~Hz}\right.$, isomer A$]$ and $-5.2\left[{ }^{1} J(\mathrm{PtH}) 460 \mathrm{~Hz}\right.$, isomer B), indicating the presence of two isomers (or rotamers) in approximately a 2:1 ratio.
§ Crystal data for 3: $\mathrm{C}_{74} \mathrm{H}_{132} \mathrm{O}_{10} \mathrm{P}_{4} \mathrm{Pt}_{4} \mathrm{Re}_{2}, M=2458.44$, trigonal, space group $R 3 c$ (No. 167), hexagonal axes, $a=45.067(7), c=26.498(2) \AA, U$ $=46,608(11) \AA^{3}, D_{\mathrm{c}}=1.577 \mathrm{~g} \mathrm{~cm}^{-3}, Z=18, R_{1}=0.047, w R_{2}=$ 0.111 .

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

1 P. W. Frost, J. A. K. Howard, J. L. Spencer, D. G. Turner and D. Gregson, J. Chem. Soc., Chem. Commun., 1981, 1104; R. J. Goodfellow, E. M. Hamon, J. A. K. Howard, J. L. Spencer and D. G. Turner, J. Chem. Soc., Chem. Commun., 1984, 1604.

2 A. Moor, P. S. Pregosin, L. M. Venanzi and A. J. Welch, Inorg. Chim. Acta, 1984, 85, 103; D. G. Evans, M. F. Hallam, D. M. P. Mingos and R. W. M. Wardle, J. Chem. Soc., Dalton Trans., 1987, 1889.

3 K.-H. Dahmen, D. Imhof and L. M. Venanzi, Helv. Chim. Acta, 1994, 77, 1029.
4 D. G. Evans and D. M. P. Mingos, J. Organomet. Chem., 1982, 240, 321.

5 For recent reviews, see D. M. P. Mingos and D. J. Wales, Introduction to Cluster Chemistry, Prentice Hall, New Jersey, 1990; D. Imhof and L. M. Venanzi, Chem. Soc. Rev., 1994, 185.

6 K.-H. Dahmen, A. Moor, R. Naegeli and L. M. Venanzi, Inorg. Chem., 1991, 30, 4268.
7 G. K. Anderson and R. J. Cross, J. Chem. Soc., Dalton Trans., 1979, 1246; M. J. Church and M. J. Mays, J. Chem. Soc. A, 1968, 3074; R. G. Goel, W. O. Ogini and R. C. Srivastava, Organometallics, 1982, 1, 819; A. J. McLennan and R. J. Puddephatt, Organometallics, 1986, 5, 811.

8 D. M. P. Mingos and R. W. M. Wardle, Transition Met. Chem., 1985, 10, 441.
9 R. J. Puddephatt, Lj. Manojlović-Muir and K. W. Muir, Polyhedron, 1990, 9, 2767.
10 Y. Yang and P. R. Sharp, J. Am. Chem. Soc., 1994, 116, 6983; E. Zeller, H. Beruda and H. Schmidbaur, Inorg. Chem., 1993, 32, 3203.

11 E. Weber and H.-P. Josel, J. Incl. Phenom., 1983, 1, 79.

